© A. Heddergott / TUM

Während die Anzahl der Qubits und die Stabilität der Quantenzustände die derzeitigen Quantencomputer noch begrenzen, gibt es Fragen, in denen diese Prozessoren ihre enorme Rechenleistung bereits nutzen können. In Zusammenarbeit mit dem Google Quantum AI Team haben Wissenschaftler der Technischen Universität München (TUM) und der University of Nottingham mit einem Quantenprozessor den Grundzustand eines sogenannten Toric Code-Hamiltonian simuliert – ein archetypisches Modellsystem in der modernen Physik der kondensierten Materie, das ursprünglich im Zusammenhang mit der Quantenfehlerkorrektur vorgeschlagen wurde.

Wie wäre es, in einer flachen, zweidimensionalen Welt zu leben? Physiker sagen voraus, dass die Quantenmechanik in diesem Fall noch seltsamer wäre. Beispielsweise würde es exotische Teilchen geben, sogenannten „Anyons“, die es in unserer dreidimensionalen Welt nicht gibt. Doch diese unbekannte Welt ist nicht nur eine Kuriosität, sondern möglicherweise der Schlüssel zu Erschließung von Quantenmaterialien und -technologien der Zukunft, so die TUM in einer Pressemeldung.

In Zusammenarbeit mit dem Google Quantum AI Team haben Wissenschaftler der Technischen Universität München und der University of Nottingham einen gut kontrollierbaren Quantenprozessor eingesetzt, um solche Quantenmaterie-Zustände zu simulieren. In der aktuellen Ausgabe der renommierten Fachzeitschrift “Science” stellen sie ihre Ergebnisse vor.

Quantenteilchen in zweidimensionalen Systemen

Alle Partikel in unserer dreidimensionalen Welt sind entweder Bosonen oder Fermionen. Jedoch wurde bereits vor fast 50 Jahren theoretisch vorhergesagt, dass andere Arten von Teilchen, die sogenannten Anyons, existieren könnten, wenn Materie auf zwei Dimensionen beschränkt ist.

Solche zweidimensionalen Systeme sind die sogenannten topologischen Phasen der Materie, deren Entdeckung 2016 mit dem Nobelpreis gewürdigt wurde. Hier können Anyon-Teilchen als kollektive Anregungen entstehen.

„Das Verdrehen von Paaren dieser Anyons durch Umeinanderbewegen in der Simulation enthüllt ihre exotischen Eigenschaften – Physiker nennen das Flechtstatistiken“, sagt Dr. Adam Smith von der University of Nottingham.

Ein einfaches Bild für diese kollektiven Erregungen ist die „La Ola-Welle“ eines Stadionpublikums – sie hat eine genau definierte Position, aber sie kann ohne die Tausenden von Menschen nicht existieren, aus denen sich die Menge zusammensetzt. Die experimentelle Realisierung und Simulation solcher topologisch geordneter Zustände hat sich jedoch als äußerst schwierig erwiesen.

Quantenprozessoren als Plattform für kontrollierte Quantensimulationen

In wegweisenden Experimenten programmierten die Teams der TUM, der University of Nottingham und von Google Quantum AI den Quantenprozessor von Google, um diese zweidimensionalen Zustände der Quantenmaterie zu simulieren.

„Googles ‚Sycamore‘ Quantenprozessor kann präzise gesteuert werden und ist ein gut isoliertes Quantensystem, was eine wichtige Voraussetzung für die Durchführung von Quantenberechnungen ist“, sagt Erstautor Kevin Satzinger, ein Wissenschaftler aus dem Google-Team.

Mit dem von ihnen entwickelten Quantenalgorithmus konnte das Forschungsteam schließlich Zustände mit topologischer Ordnung realisieren, Anyon-Anregungen simulieren und gegeneinander verdrehen. Die Simulation zeigte auch die Auswirkungen weitreichender Quantenverschränkung. Eine mögliche Anwendung solcher topologisch geordneter Zustände sind neue Methoden der Fehlerkorrektur, um Quantencomputer zu verbessern. Erste Schritte in Richtung dieses Ziels wurden in der publizierten Arbeit bereits erreicht.

„Schon bald werden Quantenprozessoren eine ideale Plattform darstellen, um die Physik exotischer Phasen von Quantenmaterialien zu erforschen“, sagt Frank PollmannProfessor für theoretische Festkörperphysik an der TUM. „In naher Zukunft versprechen Quantenprozessoren, Probleme zu lösen, die für die heutigen klassischen Supercomputer unerreichbar sind.“

Auch interessant: Das Munich Quantum Valley soll Quantenforschung beschleunigen

Für Sie ausgewählt!

Innovation Origins ist die europäische Plattform für Innovationsnachrichten. Neben den vielen Berichten unserer eigenen Redakteure aus 15 europäischen Ländern wählen wir die wichtigsten Pressemitteilungen aus zuverlässigen Quellen aus. So bleiben Sie auf dem Laufenden, was in der Welt der Innovation passiert. Kennen Sie eine Organisation, die in unserer Liste ausgewählter Quellen nicht fehlen darf? Dann melden Sie sich bei unserem Redaktionsteam.

CurrencyBetrag