World Economic Forum (WEF) asked a group of international technology experts to identify this year’s Top 10 Emerging Technologies. After soliciting nominations from additional experts around the globe, the group evaluated dozens of proposals according to a number of criteria. Do the suggested technologies have the potential to provide major benefits to societies and economies? Could they alter established ways of doing things? Are they likely to make significant inroads in the next several years? “Technologies that are emerging today will soon be shaping the world tomorrow and well into the future – with impacts to economies and to society at large”, said Mariette DiChristina, Editor-in-Chief of Scientific American, and chair of the Emerging Technologies Steering Committee. In our constant lookout for the origins of innovation, IO will present WEF’s top-10 emerging technologies in a 10-part series. Today: DNA Data Storage.

After part 10 has been published, the whole series can be found here

Every minute in 2018, Google conducted 3.88 million searches, people watched 4.33 million videos on YouTube, sent 159,362,760 emails, tweeted 473,000 times and posted 49,000 photos on Instagram, according to software company Domo. By 2020, an estimated 1.7 megabytes of data will be created per second per person globally, which translates into about 418 zettabytes in a single year (418 billion one-terabyte hard drive’s worth of information) assuming a world population of 7.8 billion. The magnetic or optical data-storage systems that currently hold this volume of 0s and 1s typically cannot last for more than a century, if that. On top of this, running data centres takes huge amounts of energy. In short, we are about to have a serious data-storage problem that will only become more severe over time.

Massive amounts of data

Progress is being made in an alternative to hard drives: DNA-based data storage. DNA – which consists of long chains of the nucleotides A, T, C and G – is life’s information-storage material. Data can be stored in the sequence of these letters, turning DNA into a new form of information technology. It is already routinely sequenced (read), synthesized (written to) and accurately copied with ease. DNA is also incredibly stable, as has been demonstrated by the complete genome sequencing of a fossil horse that lived more than 500,000 years ago. And storing it does not require much energy.

But it is the storage capacity that shines. DNA can accurately stow massive amounts of data at a density far exceeding that of electronic devices. The simple bacterium Escherichia coli (E.coli), for instance, has a storage
density of about 1019 bits per cubic centimetre, according to calculations published in 2016 in Nature Materials by George Church of Harvard University and his colleagues. At that density, all the world’s current storage needs for a year could be well met by a cube of DNA measuring about one metre on a side.

The prospect of DNA data storage is not merely theoretical. In 2017, for instance, Church’s group at Harvard adopted CRISPR DNA-editing technology to record images of a human hand into the genome of E.coli, which were read out with higher than 90% accuracy. And researchers at the University of Washington and Microsoft Research have developed a fully automated system for writing, storing and reading data encoded in DNA. A number of companies, including Microsoft and Twist Bioscience, are working to advance DNA-storage technology.

Molecular identification “tags”

James Dahlman, © GeorgiaTech

Meanwhile, DNA is already being used to manage data in a different way by researchers who grapple with making sense of tremendous volumes of data. Recent advancements in next-generation sequencing techniques allow for billions
of DNA sequences to be read easily and simultaneously. With this ability, investigators can employ barcoding – use of DNA sequences as molecular identification “tags” – to keep track of experimental results. DNA barcoding is now being used to dramatically accelerate the pace of research in fields such as chemical engineering, materials science and nanotechnology. At the Georgia Institute of Technology, for example, James E. Dahlman’s laboratory is rapidly identifying safer gene therapies; others are figuring out how to combat drug resistance and prevent cancer metastasis.

Among the challenges to making DNA data storage commonplace are the costs and speed of reading and writing DNA, which need to drop even further if the approach is to compete with electronic storage. Even if DNA does not become a ubiquitous storage material, it will almost certainly be used for generating information at entirely new scales and preserving certain types of data over the long term.

(Most of this article is drawn from the 2019 Top 10 Emerging Technologies report)

Support us!

Innovation Origins is an independent news platform, which has an unconventional revenue model. We are sponsored by companies that support our mission: spreading the story of innovation. Read more here.

On Innovation Origins you can always read articles for free. We want to keep it that way. Have you enjoyed this article so much that you want to contribute to independent journalism? Click here: