© dcbel - Unsplash

Researchers have developed a machine learning algorithm that could help reduce charging times and prolong battery life in electric vehicles by predicting how different driving patterns affect battery performance, improving safety and reliability.

The researchers, from the University of Cambridge, say their algorithm could help drivers, manufacturers, and businesses get the most out of the batteries that power electric vehicles by suggesting routes and driving patterns that minimise battery degradation and charging times, writes the British university in a press release.

Avoiding battery’s degrade

The team developed a non-invasive way to probe batteries and get a holistic view of battery health. These results were then fed into a machine learning algorithm that can predict how different driving patterns will affect the future health of the battery.

If developed commercially, the algorithm could be used to recommend routes that get drivers from point to point in the shortest time without degrading the battery, for example, or recommend the fastest way to charge the battery without causing it to degrade.

The health of a battery, whether it’s in a smartphone or a car, is far more complex than a single number on a screen. “Battery health, like human health, is a multi-dimensional thing, and it can degrade in lots of different ways,” said first author Penelope Jones, from Cambridge’s Cavendish Laboratory. “Most methods of monitoring battery health assume that a battery is always used in the same way. But that’s not how we use batteries in real life. If I’m streaming a TV show on my phone, it’s going to run down the battery a whole lot faster than if I’m using it for messaging. It’s the same with electric cars – how you drive will affect how the battery degrades.”

Battery’s ‘biomarkers’

The researchers developed a non-invasive probe that sends high-dimensional electrical pulses into a battery and measures the response, providing a series of ‘biomarkers’ of battery health. This method is gentle on the battery and doesn’t cause it to degrade any further.

The electrical signals from the battery were converted into a description of the battery’s state, which was fed into a machine learning algorithm. The algorithm was able to predict how the battery would respond in the next charge-discharge cycle, depending on how quickly the battery was charged and how fast the car would be going the next time it was on the road. Tests with 88 commercial batteries showed that the algorithm did not require any information about previous usage of the battery to make an accurate prediction.

The experiment focused on lithium cobalt oxide (LCO) cells, which are widely used in rechargeable batteries, but the method is generalisable across the different types of battery chemistries used in electric vehicles today.

Potential for several areas

The researchers say that in addition to manufacturers and drivers, their method could be useful for businesses that operate large fleets of electric vehicles, such as logistics companies. “The framework we’ve developed could help companies optimize how they use their vehicles to improve the overall battery life of the fleet,” said Dr. Alpha Lee, who led the research. “There’s so much potential with a framework like this.”

The researchers are now working with battery manufacturers to accelerate the development of safer, longer-lasting next-generation batteries. They are also exploring how their framework could be used to develop optimal fast charging protocols to reduce electric vehicle charging times without causing degradation.

Selected for you!

Innovation Origins is the European platform for innovation news. In addition to the many reports from our own editors in 15 European countries, we select the most important press releases from reliable sources. This way you can stay up to date on what is happening in the world of innovation. Are you or do you know an organization that should not be missing from our list of selected sources? Then report to our editorial team.

Doneer

Personal Info