Victor Weiss (re.) mit Samuele Zoratto (c) TU Wien

Virus-like particles are very important in medicine and are used for vaccinations, amongst other things. Yet it is technically very difficult to accurately characterize and identify them. Victor Weiss, from the Institute of Chemical Technologies and Analytics at the Vienna University of Technology, accepted the challenge. The assistant professor adapted the gas-phase electrophoresis system at the Vienna University of Technology and discovered a remarkably precise correlation between diameter and mass.

Virus-like particles look like viruses yet do not contain any genetic information and cannot multiply or spread.

Common methods for characterizing virus-like particles are inefficient. For example, images from an electron microscope are useful, but only a small number of particles are possible. However, from a statistical point of view, we want to have enough information on thousands of particles.

Subscribe to our Newsletter!

Your weekly innovation overview Every sunday the best articles of the week in your inbox.

    Separating particles on the basis of mass and charge

    Weiss wants to classify the virus-like particles by defining the mass. Since different bioparticles have different masses, they are easy to distinguish from each other. This approach would imply the use of mass spectrometry, whereby particles are separated according to mass and charge. However, this is hardly suitable for biological particles such as virus-like particles because they are heavier than simpler, smaller molecules. Weiss explains further that “the sample must be extremely pure, otherwise the signals of various particle types overlap each other to such an extent that it is no longer possible to draw any conclusions.”

    Diameter as an additional parameter

    This is why the research group involved with mass spectrometric bio and polymer analysis at the TU Vienna turned to another method: gas phase electrophoresis. This makes it possible to sort particles not only by mass and charge, but especially by diameter.

    Virus-like particles are usually more or less round. Many of them have an icosahedron shape. The term icosahedron comes from Ancient Greek and means ‘twenty-fold’. It refers to highly symmetrical entities whose corners, edges and surfaces are similar to each other.

    Because of their shape, the molecular weight of the particles can be accurately determined by measuring the diameter. In order to make this measurement possible, the team adapted the gas-phase electrophoresis system at the Vienna University of Technology and succeeded in discovering an exact relationship between diameter and mass. Weiss explains: “If we use our method to calculate the mass based on the diameter, we are only 1.5% below the theoretical values that were predicted for these particles. This is a remarkable degree of accuracy which makes identification of a virus-like particle very straightforward. Now the team hopes to put the method into practice on a permanent basis.

    “Our method complements conventional mass spectrometry. The combination of both methods will enable us to obtain fast and reliable results in the future.” Victor Weiss.

    Victor Weiss was awarded the Theodor Körner Förderpreis in 2017. This award aims to encourage scientists to continue and/or complete projects.

    Original publication

    Weiss, et al., Virus-like particle size and molecular weight/mass determination applying gas-phase electrophoresis (native nES GEMMA), Anal Bioanal Chem (2019) 411: 5951.


    Also of interest:

    Quantum Sensor for Measuring Light Particles

    Quantum Physics for Precise Dating of Glacial Ice

    Support us!

    Innovation Origins is an independent news platform that has an unconventional revenue model. We are sponsored by companies that support our mission: to spread the story of innovation. Read more.

    At Innovation Origins, you can always read our articles for free. We want to keep it that way. Have you enjoyed our articles so much that you want support our mission? Then use the button below:


    Personal Info

    About the author

    Author profile picture Hildegard Suntinger lives as a freelance journalist in Vienna and writes about all aspects of fashion production. She follows new trends in society, design, technology and business and finds it exciting to observe interdisciplinary tendencies between the different fields. The key element is technology, which changes all areas of life and work.