© rawpixel.com on Freepik

Researchers from the University of Dundee have discovered a small molecule that helps to eliminate a Parkinson’s disease-causing protein, writes the Scottish university in a press release.

Parkinson’s disease is a progressive neurodegenerative disorder affecting more than 10 million people worldwide. No cure is available and current treatment is limited to symptomatic management.

Researchers from the University’s Centre for Targeted Protein Degradation (CeTPD) and MRC Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU) have made significant strides towards developing new therapies through the design of XL01126, a small molecule that degrades a protein known to play a key role in the development of Parkinson’s.

Therapeutics for Parkinson’s

The protein, Leucine Rich Repeat Kinase 2 (LRRK2), is one of the most important and promising targets for developing treatments for Parkinson’s disease, but until now scientists have only been able to inhibit its function rather than destroying it completely.

XL01126 eliminates LRRK2 from within the cell by utilising the cell’s natural waste disposal system. The research also demonstrated that XL01126 can be taken orally and can be detected in the brain in mice, two sought-after features of drugs targeting neurodegenerative diseases that can be very challenging to achieve.

The Dundee team, led by Dr Xingui Liu and Dr Alexia Kalogeropulou, believe XL01126 will be a very useful research tool compound and has the potential to lead to therapeutics for Parkinson’s disease.

Targeted degradation

XL01126 offers a starting point for applying a degrader molecule in the treatment of LRRK2-driven Parkinson’s disease. It takes the field of targeted protein degradation (TPD) one step closer to developing drugs against neurodegenerative diseases. The next steps in developing the treatment are currently underway with further pre-clinical studies to establish safety and effectiveness in vivo.

Targeted protein degradation co-opts the cell’s natural disposal systems to remove disease-causing proteins and is applicable to diverse therapeutic areas including oncology, inflammation, dermatology, immunology and respiratory diseases.

Degrading’s advantages

Dundee researchers and teams led by CeTPD Director Professor Alessio Ciulli have previously revealed fundamental insights into the working of the degrader molecules that they have designed and that are used across the globe. Moreover, the seminal work conducted by the lab of MRC-PPU Director Professor Dario Alessi, which has identified various key components of the LRRK2 signalling pathway including the first physiological substrates of LRRK2, has been instrumental in qualifying the best LRRK2 PROTAC degraders.

Degrading rather than inhibiting a target protein offers several advantages such as a more efficacious drug response at lower doses, and a more targeted intervention with potentially reduced side effects and disease resistance. Proteolysis-targeting chimeras (PROTACs) are currently leading the field of TPD with multiple PROTAC degraders being trialled as candidate medicines against various diseases and progressing through clinical trials.

Selected for you!

Innovation Origins is the European platform for innovation news. In addition to the many reports from our own editors in 15 European countries, we select the most important press releases from reliable sources. This way you can stay up to date on what is happening in the world of innovation. Are you or do you know an organization that should not be missing from our list of selected sources? Then report to our editorial team.