European Solar Telescope (https://www.est-east.eu/)

When astronomers use telescopes to monitor and take images of space objects, the earth’s atmosphere can distort the image – much like the weather can cloud the lens on a camera. Telescopes that orbit in space, such as the Hubble Telescope, do not have this issue since they avoid the atmosphere altogether. However, the most powerful telescopes are also the largest and, for now, these are built on earth.

To correct for the optical distortions caused by the atmosphere, Adaptive Secondary Mirrors (ASMs) can be built in to earth-bound telescopes which allow for a clearer image of space. A bid by TNO has been selected for the preliminary design one such ASM for the European Solar Telescope (EST), so it can be used to better monitor the sun’s activity.

Balanced actuators

The ASMs are mirrors that change shape in order to correct for the issues our atmosphere creates. To achieve this, the adaptive mirrors are mounted on actuators – devices that push and pull the mirrors in a way that change their shape (or optical prescription). Much of the innovation that TNO submitted, and ultimately won the bid for, is built around these actuators as they are more reliable and efficient than the competition.

Subscribe to IO on Telegram!

Want to be inspired 365 days per year? Here’s the opportunity. We offer you one "origin of innovation" a day in a compact Telegram message. Seven days a week, delivered around 8 p.m. CET. Straight from our newsroom. Subscribe here, it's free!

Subscribe!

“The key to our technology is that we have reinvented the deformable mirror actuator,” says Matthew Maniscalco, one of TNO’s team members involved in the project.

Other actuator designs rely on floating electro-magnets to move the mirrors, meaning that the force can change depending on the distance from the magnet. TNO’s actuator design is physically attached to the mirror and is engineered with a spring, electromagnetic coils, and fixed magnets that keep the forces balanced and linear. This means it can be more energy efficient and precise.

Impression of the EST-ASM, courtesy of TNO

Studying the sun and space

The success of this design will allow the EST to monitor the sun and even predict for disturbances like solar flares. The radiation that comes from solar flares can be very harmful to satellites – but by simply turning the sensitive satellites systems off, one can protect against much of the damage. Thus, being able to predict for solar flares can be very useful for satellite longevity.

Larger telescopes are being built all over the world to understand phenomena like this but Maniscalco hopes that the technology can be used to keep existing telescopes relevant.  

“We believe our technology can be used to retrofit really great, older telescopes to help them compete with upcoming new giant telescopes,” says Maniscalco.

Read about how citizens can help look for black holes with the LOFAR telescope.

Support us!

Innovation Origins is an independent news platform that has an unconventional revenue model. We are sponsored by companies that support our mission: to spread the story of innovation. Read more.

At Innovation Origins, you can always read our articles for free. We want to keep it that way. Have you enjoyed our articles so much that you want support our mission? Then use the button below:

Doneer

Personal Info

About the author

Author profile picture Originally from Canada, Alex recently finished his MA in journalism and media studies from the University of Groningen. He loves explaining complicated ideas in easy to understand language and interviewing the great minds behind those ideas. Outside of writing, he can be found playing sports or daydreaming about surfing.