Image by Colin Behrens from Pixabay

GenoRobotics (Lausanne), a project backed by École Polytechnique Fédérale de Lausanne (EPFL), is developing and testing a portable device for taking DNA measurements. They are developing it so they can take on-the-spot DNA samples of plant species and map biodiversity, even as climate change causes it to shift. The problem with current methods is that DNA often needs to be stored and sent to a specialized lab in order to be characterized – which can be difficult to do when taking samples in remote places. The samples can also be tainted along the way, meaning one would have to go back to get another sample.

This device would allow scientists to extract and sequence DNA while in the field, allowing them to create more accurate maps of changes to region specific flora.

GenoRobotics

Backed by EPFL’s MAKE program, the GenoRobotics project is headed by two EPFL graduates, Nicolas Adam and Jonathan Selz. The two came up with the idea while on a research expedition in Madagascar to characterize lemur environments. The samples had to be sent back to the United States for analysis but – due to administrative red-rape – the samples took two years before they could be analysed in a lab. The two realized they needed to find a way to sequence and analyse DNA to avoid these lengthy delays.

Subscribe to IO on Telegram!

Want to be inspired 365 days per year? Here’s the opportunity. We offer you one "origin of innovation" a day in a compact Telegram message. Seven days a week, delivered around 8 p.m. CET. Straight from our newsroom. Subscribe here, it's free!

Subscribe!

To speed up the extraction process, the technology uses a hydrogel developed by EPFL students. The hydrogel was originally designed to administer vaccines and contains tiny needles. It is a small, square piece of gel that – once pressed on a species – can use the needles to extract the DNA.

Our tests show that strands obtained this way are pure enough and concentrated enough to perform DNA barcoding,” says Adam in , in an article by EPFL. “To prevent the samples from becoming contaminated as they’re extracted, we’re developing a new mechanism that works like a stapler.”

Genome database

The two are also looking to create a data base that can be used and accessed in areas where internet connections are unreliable. Sequencing a genome can require dozens of gigabytes of memory and the two plan to use DNA barcoding – short segments of DNA – where a single gene can allow for characterization. Once analysed, the idea is to upload them to the database where it can interface with existing, publicly available databases  iBOL and GenBank.

Support us!

Innovation Origins is an independent news platform that has an unconventional revenue model. We are sponsored by companies that support our mission: to spread the story of innovation. Read more.

At Innovation Origins, you can always read our articles for free. We want to keep it that way. Have you enjoyed our articles so much that you want support our mission? Then use the button below:

Doneer

Personal Info

About the author

Author profile picture Originally from Canada, Alex recently finished his MA in journalism and media studies from the University of Groningen. He loves explaining complicated ideas in easy to understand language and interviewing the great minds behind those ideas. Outside of writing, he can be found playing sports or daydreaming about surfing.